Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Arch Bone Jt Surg ; 12(2): 102-107, 2024.
Article in English | MEDLINE | ID: mdl-38420518

ABSTRACT

Objectives: Synovial fluid or tissue culture is the current gold standard for diagnosis of infection, but Cutibacterium acnes (C. acnes) is a frequent cause of shoulder PJI and is a notoriously fastidious organism. The purpose of this study was to compare quantitative real-time polymerase chain reaction (qRT-PCR) to standard culture as a more rapid, sensitive means of identifying C. acnes from the glenohumeral joint. We hypothesized that qRT-PCR would be more effective than standard culture at identifying C. acnes and would have greater sensitivity and specificity for detecting infection. Methods: This was a prospective observational study with 100 consecutive patients undergoing arthroscopic or open shoulder surgery with known positive and negative controls. Intraoperatively, synovial fluid and tissue was obtained for C. acnes qRT-PCR and results were blinded to the gold standard microbiology cultures. Results: Clinical review demonstrated 3 patients (3%) with positive cultures, none of which were positive for C. acnes. Of the samples tested by the C. acnes qRT-PCR standard curve, 12.2% of tissue samples and 4.5% of fluid samples were positive. Culture sensitivity was 60.0%, specificity was 100.0%, PPV was 100.0%, and NPV was 97.9%. C. acnes qRT-PCR standard curve sensitivity, specificity, PPV, and NPV was 60.0%, 90.3%, 25.0%, and 97.7% respectively for tissue specimens and 0%, 95.2%, 0%, and 95.2% respectively, for fluid specimens. For combination of culture and tissue qRT-PCR, the sensitivity, specificity, PPV and NPV was 100%, 90.3%, 35.7%, and 100%, respectively. Conclusion: We report that qRT-PCR for C. acnes identified the organism more frequently than conventional culture. While these findings demonstrate the potential utility of qRT-PCR, the likelihood of false positive results of qRT-PCR should be considered. Thus, qRT-PCR may be useful as an adjuvant to current gold standard workup of synovial fluid or tissue culture for the diagnosis of infection.

2.
Nat Commun ; 14(1): 6657, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863982

ABSTRACT

Whether CD8+ T lymphocytes control human immunodeficiency virus infection by cytopathic or non-cytopathic mechanisms is not fully understood. Multiple studies highlighted non-cytopathic effects, but one hypothesis is that cytopathic effects of CD8+ T cells occur before viral production. Here, to examine the role of CD8+ T cells prior to virus production, we treated SIVmac251-infected macaques with an integrase inhibitor combined with a CD8-depleting antibody, or with either reagent alone. We analyzed the ensuing viral dynamics using a mathematical model that included infected cells pre- and post- viral DNA integration to compare different immune effector mechanisms. Macaques receiving the integrase inhibitor alone experienced greater viral load decays, reaching lower nadirs on treatment, than those treated also with the CD8-depleting antibody. Models including CD8+ cell-mediated reduction of viral production (non-cytolytic) were found to best explain the viral profiles across all macaques, in addition an effect in killing infected cells pre-integration (cytolytic) was supported in some of the best models. Our results suggest that CD8+ T cells have both a cytolytic effect on infected cells before viral integration, and a direct, non-cytolytic effect by suppressing viral production.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Humans , Animals , CD8-Positive T-Lymphocytes , Macaca mulatta , Integrase Inhibitors/pharmacology , Viral Load , Virus Replication
3.
Sci Rep ; 13(1): 4593, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944677

ABSTRACT

Antibiotic stewardship is viewed as having great public health benefit with limited direct benefit to the patient at the time of administration. The objective of our study was to determine if inappropriate administration of antibiotics could create conditions that would increase the rates of surgical infection. We hypothesized that sub-MIC levels of vancomycin would increase Staphylococcus aureus growth, biofilm formation, and rates of infection. S. aureus MRSA and MSSA strains were used for all experiments. Bacteria were grown planktonically and monitored using spectrophotometry. Quantitative agar culture was used to measure planktonic and biofilm bacterial burden. A mouse abscess model was used to confirm phenotypes in vivo. In the planktonic growth assay, increases in bacterial burden at » MIC vancomycin were observed in USA300 JE2 by 72 h. Similar findings were observed with ½ MIC in Newman and SH1000. For biofilm formation, USA300 JE2 at » and ½ MIC vancomycin increased biofilm formation by approximately 1.3- and 2.3-fold respectively at 72 h as compared to untreated controls. Similar findings were observed with Newman and SH1000 with a 2.4-fold increase in biofilm formation at ½ MIC vancomycin. In a mouse abscess model, there was a 1.2-fold increase with sub-MIC vancomycin at 3 days post infection. Our study showed that Sub-optimal vancomycin dosing promoted S. aureus planktonic growth and biofilm formation, phenotypic measures of bacterial virulence. This phenotype induced by sub-MIC levels of vancomycin was also observed to increase rates of infection and pathogenesis in our mouse model. Risks of exposure to sub-MIC concentrations with vancomycin in surgical procedures are greater as there is decreased bioavailability in tissue in comparison to other antibiotics. This highlights the importance of proper antibiotic selection, stewardship, and dosing for both surgical prophylaxis and treatment of infection.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus , Surgical Wound Infection , Abscess , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Staphylococcal Infections/microbiology , Biofilms , Microbial Sensitivity Tests
4.
Nat Commun ; 14(1): 979, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813761

ABSTRACT

CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Chlorocebus aethiops , Disease Progression , CD4-Positive T-Lymphocytes
5.
J Virol ; 96(12): e0044522, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35638831

ABSTRACT

HIV persistence requires lifelong antiretroviral therapy (ART), calling for a cure. The histone deacetylase inhibitor, romidepsin, is used in the "shock and kill" approach with the goal of reactivating virus and subsequently clearing infected cells through cell-mediated immune responses. We tested serial and double infusions of romidepsin in a rhesus macaque (RM) model of SIV functional cure, which controls virus without ART. Off ART, romidepsin reactivated SIV in all RMs. Subsequent infusions resulted in diminished reactivation, and two RMs did not reactivate the virus after the second or third infusions. Therefore, those two RMs received CD8-depleting antibody to assess the replication competence of the residual reservoir. The remaining RMs received double infusions, i.e., two doses separated by 48-h. Double infusions were well tolerated, induced immune activation, and effectively reactivated SIV. Although reactivation was gradually diminished, cell-associated viral DNA was minimally changed, and viral outgrowth occurred in 4/5 RMs. In the RM which did not reactivate after CD8 depletion, viral outgrowth was not detected in peripheral blood mononuclear cells (PBMC)-derived CD4+ cells. The frequency of SIV-specific CD8+ T cells increased after romidepsin administration, and the increased SIV-specific immune responses were associated, although not statistically, with the diminished reactivation. Thus, our data showing sequential decreases in viral reactivation with repeated romidepsin administrations with all RMs and absence of viral reactivation after CD8+ T-cell depletion in one animal suggest that, in the context of healthy immune responses, romidepsin affected the inducible viral reservoir and gradually increased immune-mediated viral control. Given the disparities between the results of romidepsin administration to ART-suppressed SIVmac239-infected RMs and HIV-infected normal progressors compared to our immune-healthy model, our data suggest that improving immune function for greater SIV-specific responses should be the starting point of HIV cure strategies. IMPORTANCE HIV cure is sought after due to the prevalence of comorbidities that occur in persons with HIV. One of the most investigated HIV cure strategies is the "shock and kill" approach. Our study investigated the use of romidepsin, a histone deacetylase (HDAC) inhibitor, in our rhesus macaque model of functional cure, which allows for better resolution of viral reactivation due to the lack of antiretroviral therapy. We found that repeated rounds of romidepsin resulted in gradually diminished viral reactivation. One animal inevitably lacked replication-competent virus in the blood. With the accompanying enhancement of the SIV-specific immune response, our data suggest that there is a reduction of the viral reservoir in one animal by the cell-mediated immune response. With the differences observed between our model and persons living with HIV (PWH) treated with romidepsin, specifically in the context of a healthy immune system in our model, our data thereby indicate the importance of restoring the immune system for cure strategies.


Subject(s)
Anti-Retroviral Agents , Depsipeptides , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes , Depsipeptides/pharmacology , HIV Infections , Leukocytes, Mononuclear/virology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Load , Virus Activation/drug effects , Virus Replication
6.
J Orthop Res ; 40(2): 420-428, 2022 02.
Article in English | MEDLINE | ID: mdl-33713379

ABSTRACT

Staphylococcus aureus is a common organism in orthopedic infections, but little is known about the genetic diversity of strains during an infectious process. Using periprosthetic joint infection (PJI) as a model, a prospective study was designed to quantify genetic variation among S. aureus strains both among and within patients. Whole genome sequencing and multilocus sequence typing was performed to genotype these two populations at high resolution. In nasal cultures, 78% of strains were of clonal complexes CC5, CC8, and CC30. In PJI cultures, only 63% could be classified in these common clonal complexes. The PJI cultures had a larger proportion of atypical strains, and these atypical strains were associated with poor host status and compromised immune conditions. Mutations in genes involved in fibronectin binding (ebh, fnbA, clfA, and clfB) systematically distinguished later PJI isolates from the first PJI isolate from each patient. Repeated mutations in S. aureus genes associated with extracellular matrix binding were identified, suggesting adaptive, parallel evolution of S. aureus during the development of PJI.


Subject(s)
Arthritis, Infectious , Staphylococcal Infections , Arthritis, Infectious/etiology , Genotype , Humans , Prospective Studies , Staphylococcus aureus/genetics
7.
J Bone Jt Infect ; 6(7): 241-253, 2021.
Article in English | MEDLINE | ID: mdl-34262845

ABSTRACT

The high antibiotic tolerance of Staphylococcus aureus biofilms is associated with challenges for treating periprosthetic joint infection. The toxin-antitoxin system, YefM-YoeB, is thought to be a regulator for antibiotic tolerance, but its physiological role is unknown. The objective of this study was to determine the biofilm and antibiotic susceptibility phenotypes associated with S. aureus yoeB homologs. We hypothesized the toxin-antitoxin yoeB homologs contribute to biofilm formation and antibiotic susceptibility. Disruption of yoeB1 and yoeB2 resulted in decreased biofilm formation in comparison to Newman and JE2 wild-type (WT) S. aureus strains. In comparison to yoeB mutants, both Newman and JE2 WT strains had higher polysaccharide intercellular adhesin (PIA) production. Treatment with sodium metaperiodate increased biofilm formation in Newman WT, indicating biofilm formation may be increased under conditions of oxidative stress. DNase I treatment decreased biofilm formation in Newman WT but not in the absence of yoeB1 or yoeB2. Additionally, WT strains had a higher extracellular DNA (eDNA) content in comparison to yoeB mutants but no differences in biofilm protein content. Moreover, loss of yoeB1 and yoeB2 decreased biofilm survival in both Newman and JE2 strains. Finally, in a neutropenic mouse abscess model, deletion of yoeB1 and yoeB2 resulted in reduced bacterial burden. In conclusion, our data suggest that yoeB1 and yoeB2 are associated with S. aureus planktonic growth, extracellular dependent biofilm formation, antibiotic tolerance, and virulence.

8.
Microbiome ; 8(1): 154, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33158452

ABSTRACT

BACKGROUND: The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa. RESULTS: We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with Lactobacillus and Escherichia/Shigella and Helicobacter, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples. CONCLUSIONS: The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Monkey Diseases/microbiology , Rectum/microbiology , Simian Acquired Immunodeficiency Syndrome/microbiology , Simian Immunodeficiency Virus/physiology , Vagina/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Chlorocebus aethiops/microbiology , Feces/microbiology , Female , Male , Monkey Diseases/virology , Simian Acquired Immunodeficiency Syndrome/virology
9.
Life (Basel) ; 10(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114423

ABSTRACT

Both Staphylococcus aureus and Staphylococcus epidermidis are commonly associated with periprosthetic joint infections (PJIs). The treatment of PJI can be challenging because biofilms are assumed to have an increased intolerance to antibiotics. This makes the treatment of PJI challenging from a clinical perspective. Although S. aureus has been previously demonstrated to have increased biofilm antibiotic tolerance, this has not been well established with Staphylococcus epidermidis. A prospective registry of PJI S. epidermidis isolates was developed. The efficacy of clinically relevant antibiotics was quantified against these isolates. S. epidermidis planktonic minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were collected using clinical laboratory standard index (CLSI) assays for eight antibiotics (doxycycline, vancomycin, daptomycin, clindamycin, rifampin, nafcillin, and trimethoprim/sulfamethoxazole). Mature biofilms were grown in vitro, after which minimum biofilm inhibitory concentration (MBIC) and minimum biofilm bactericidal concentration (MBBC) were quantified. Only rifampin and doxycycline had a measurable MBIC across all tested isolates. Based on MBBC, 64% of S. epidermidis biofilms could be eliminated by rifampin, whereas only 18% by doxycycline. S. epidermidis biofilm was observed to have a high tolerance to antibiotics as compared to planktonic culture. Isolate biofilm antibiotic tolerance varied to a larger degree than was seen in planktonic cultures.

10.
PLoS Pathog ; 16(3): e1008333, 2020 03.
Article in English | MEDLINE | ID: mdl-32119719

ABSTRACT

Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.


Subject(s)
Intestinal Mucosa/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Bacterial Translocation , Chlorocebus aethiops , Disease Progression , Gastrointestinal Microbiome , HIV Infections/immunology , HIV Infections/microbiology , HIV Infections/pathology , HIV Infections/virology , HIV-1/physiology , Humans , Intestinal Mucosa/microbiology , Male , Simian Acquired Immunodeficiency Syndrome/microbiology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology
11.
Antimicrob Comb Devices (2019) ; STP1630: 53-64, 2020.
Article in English | MEDLINE | ID: mdl-35529525

ABSTRACT

Cutibacterium acnes (formerly Propionibacterium acnes) is a significant pathogen in periprosthetic joint infections (PJIs) in total shoulder arthroplasty. Poor outcomes seen in PJIs are due to the established C. acnes bacterial biofilms. The prolonged nature of C. acnes infections makes them difficult to treat with antibiotics. The goal of this study was to determine the relative efficacy of vancomycin compared with penicillin and doxycycline against planktonic and mature biofilms. Clinical isolates from PJI patients as well as a laboratory strain of C. acnes were tested. Planktonic minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were obtained using modified clinical laboratory standard index assays. Biofilm MICs and MBCs were also obtained. The MIC was determined for both using the PrestoBlue viability stain. The MBC was determined using differential reinforced clostridial medium agar plates for colony-forming unit analysis. Using the PrestoBlue viability reagent, the planktonic MIC values for vancomycin were significantly higher than doxycycline. Across 10 strains of C. acnes, all three antibiotics had decreased efficacy when comparing planktonic and biofilm cultures. Although effective antibiotic doses ranged from 1 to 1,000 µg/mL, only doxycycline achieved inhibitory and bactericidal concentrations in all tested strains. Penicillin failed to achieve the minimum biofilm inhibitory concentration (MBIC) in 60% of tested strains, whereas vancomycin failed in 80% of tested strains. Penicillin, doxycycline, and vancomycin have similar abilities in inhibiting C. acnes growth planktonically. The MBIC for doxycycline was within the clinical dosing range, suggesting C. acnes biofilm offers minimal tolerance to these antibiotics. The MBIC for penicillin was within clinical dosing ranges in only 60% of trials, suggesting the relative tolerance of C. acnes to penicillin. The minimum biofilm bactericidal concentration (MBBC) of doxycycline showed efficacy in 90% of trials, whereas penicillin and vancomycin achieved MBBC in 15% of samples.

13.
mBio ; 10(6)2019 11 26.
Article in English | MEDLINE | ID: mdl-31772059

ABSTRACT

Staphylococcus aureus is the major organism responsible for surgical implant infections. Antimicrobial treatment of these infections often fails, leading to expensive surgical intervention and increased risk of mortality to the patient. The challenge in treating these infections is associated with the high tolerance of S. aureus biofilm to antibiotics. MazEF, a toxin-antitoxin system, is thought to be an important regulator of this phenotype, but its physiological function in S. aureus is controversial. Here, we examined the role of MazEF in developing chronic infections by comparing growth and antibiotic tolerance phenotypes in three S. aureus strains to their corresponding strains with disruption of mazF expression. Strains lacking mazF production showed increased biofilm growth and decreased biofilm antibiotic tolerance. Deletion of icaADBC in the mazF::Tn background suppressed the growth phenotype observed with mazF-disrupted strains, suggesting the phenotype was ica dependent. We confirmed these phenotypes in our murine animal model. Loss of mazF resulted in increased bacterial burden and decreased survival rate of mice compared to its wild-type strain demonstrating that loss of the mazF gene caused an increase in S. aureus virulence. Although lack of mazF gene expression increased S. aureus virulence, it was more susceptible to antibiotics in vivo Combined, the ability of mazF to inhibit biofilm formation and promote biofilm antibiotic tolerance plays a critical role in transitioning from an acute to chronic infection that is difficult to eradicate with antibiotics alone.IMPORTANCE Surgical infections are one of the most common types of infections encountered in a hospital. Staphylococcus aureus is the most common pathogen associated with this infection. These infections are resilient and difficult to eradicate, as the bacteria form biofilm, a community of bacteria held together by an extracellular matrix. Compared to bacteria that are planktonic, bacteria in a biofilm are more resistant to antibiotics. The mechanism behind how bacteria develop this resistance and establish a chronic infection is unknown. We demonstrate that mazEF, a toxin-antitoxin gene, inhibits biofilm formation and promotes biofilm antibiotic tolerance which allows S. aureus to transition from an acute to chronic infection that cannot be eradicated with antibiotics but is less virulent. This gene not only makes the bacteria more tolerant to antibiotics but makes the bacteria more tolerant to the host.


Subject(s)
Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Biofilms , Drug Resistance, Bacterial , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/pharmacology , Antitoxins/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Biofilms/drug effects , Chronic Disease , Female , Humans , Male , Mice , Mice, Inbred C57BL , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Toxin-Antitoxin Systems
14.
Nat Commun ; 10(1): 5101, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31704931

ABSTRACT

Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-ß and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.


Subject(s)
Fibronectins/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Transforming Growth Factor beta/immunology , Wound Healing/immunology , Animals , Chlorocebus aethiops/genetics , Chlorocebus aethiops/immunology , Disease Progression , Fibronectins/metabolism , Intestinal Mucosa/metabolism , Macaca mulatta/genetics , Macaca mulatta/immunology , Macrophages/metabolism , Rectum/immunology , Rectum/metabolism , Simian Immunodeficiency Virus , Systems Biology , Transcriptome , Transforming Growth Factor beta/genetics , Wound Healing/genetics
15.
J Orthop Res ; 37(7): 1604-1609, 2019 07.
Article in English | MEDLINE | ID: mdl-30919513

ABSTRACT

Staphylococcus aureus biofilms have a high tolerance to antibiotics, making the treatment of periprosthetic joint infection (PJI) challenging. From a clinical perspective, bacteria from surgical specimens are cultured in a planktonic state to determine antibiotic sensitivity. However, S. aureus exists primarily as established biofilms in PJI. To address this dichotomy, we developed a prospective registry of total knee and hip arthroplasty PJI S. aureus isolates to quantify the activity of clinically important antibiotics against isolates grown as biofilms. S. aureus planktonic minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using clinical laboratory standard index assays for 10 antibiotics (cefazolin, clindamycin, vancomycin, rifampin, linezolid, nafcillin, gentamicin, trimethoprim/sulfamethoxazole, doxycycline, and daptomycin). Mature biofilms of each strain were grown in vitro, after which biofilm MIC (MBIC) and biofilm MBC (MBBC) were determined. Overall, isolates grown as biofilms displayed larger variations in antibiotic MICs as compared to planktonic MIC values. Only rifampin, doxycycline, and daptomycin had measurable biofilm MIC values across all S. aureus isolates tested. Biofilm MBC observations complemented biofilm MIC observations; rifampin, doxycycline, and daptomycin were the only antibiotics with measurable biofilm MBC values. 90% of S. aureus biofilms could be killed by rifampin, 50% by doxycycline, and only 15% by daptomycin. Biofilm formation increased bacterial antibiotic tolerance nonspecifically across all antibiotics, in both MSSA and MRSA samples. Rifampin and doxycycline were the most effective antibiotics at killing established S. aureus biofilms. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1604-1609, 2019.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arthritis, Infectious/microbiology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Prosthesis-Related Infections/microbiology , Humans , Microbial Sensitivity Tests
16.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29925666

ABSTRACT

Current approaches do not eliminate all human immunodeficiency virus type 1 (HIV-1) maternal-to-infant transmissions (MTIT); new prevention paradigms might help avert new infections. We administered maraviroc (MVC) to rhesus macaques (RMs) to block CCR5-mediated entry, followed by repeated oral exposure of a CCR5-dependent clone of simian immunodeficiency virus (SIV) mac251 (SIVmac766). MVC significantly blocked the CCR5 coreceptor in peripheral blood mononuclear cells and tissue cells. All control animals and 60% of MVC-treated infant RMs became infected by the 6th challenge, with no significant difference between the number of exposures (P = 0.15). At the time of viral exposures, MVC plasma and tissue (including tonsil) concentrations were within the range seen in humans receiving MVC as a therapeutic. Both treated and control RMs were infected with only a single transmitted/founder variant, consistent with the dose of virus typical of HIV-1 infection. The uninfected RMs expressed the lowest levels of CCR5 on the CD4+ T cells. Ramp-up viremia was significantly delayed (P = 0.05) in the MVC-treated RMs, yet peak and postpeak viral loads were similar in treated and control RMs. In conclusion, in spite of apparent effective CCR5 blockade in infant RMs, MVC had a marginal impact on acquisition and only a minimal impact on the postinfection delay of viremia following oral SIV infection. Newly developed, more effective CCR5 blockers may have a more dramatic impact on oral SIV transmission than MVC.IMPORTANCE We have previously suggested that the very low levels of simian immunodeficiency virus (SIV) maternal-to-infant transmissions (MTIT) in African nonhuman primates that are natural hosts of SIVs are due to a low availability of target cells (CCR5+ CD4+ T cells) in the oral mucosa of the infants, rather than maternal and milk factors. To confirm this new MTIT paradigm, we performed a proof-of-concept study in which we therapeutically blocked CCR5 with maraviroc (MVC) and orally exposed MVC-treated and naive infant rhesus macaques to SIV. MVC had only a marginal effect on oral SIV transmission. However, the observation that the infant RMs that remained uninfected at the completion of the study, after 6 repeated viral challenges, had the lowest CCR5 expression on the CD4+ T cells prior to the MVC treatment appears to confirm our hypothesis, also suggesting that the partial effect of MVC is due to a limited efficacy of the drug. New, more effective CCR5 inhibitors may have a better effect in preventing SIV and HIV transmission.


Subject(s)
CCR5 Receptor Antagonists/administration & dosage , Cyclohexanes/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/transmission , Triazoles/administration & dosage , Animals , CCR5 Receptor Antagonists/pharmacokinetics , Cyclohexanes/pharmacokinetics , Humans , Infant , Maraviroc , Palatine Tonsil/chemistry , Serum/chemistry , Treatment Outcome , Triazoles/pharmacokinetics , Viral Load
17.
J Orthop Res ; 36(1): 452-458, 2018 01.
Article in English | MEDLINE | ID: mdl-28543707

ABSTRACT

Treatment in periprosthetic joint infection (PJI) remains challenging. The failure rate of two-stage revision and irrigation and debridement with component retention in PJI suggests that biofilm cells have a high tolerance to antibiotic chemotherapy. Previous work has demonstrated that biofilm cells have high antibiotic tolerance in vitro, but there is little clinical evidence to support these observations. The aim of this study was to determine if retrieved antibiotic spacers from two-stage revision total knee arthroplasty for PJI have evidence of remaining viable bacteria. Antibiotic poly (methyl methacrylate) (PMMA) spacers from two-stage revision total knee arthroplasty for PJI were prospectively collected and analyzed for bacterial 16s rRNA using polymerase chain reaction (PCR), reverse transcription (RT)-PCR, quantitative RT-PCR (qRT-PCR), and single genome analysis (SGA). PCR and RT-PCR identified bacterial species on 53.8% (7/13) of these samples. When initial culture negative cases are excluded, 68% (6/9) samples were identified with bacterial species. A more rigorous qRT-PCR analysis showed a strong positive signal for bacterial contamination in 30.7% (4/13) of cases. These patients did not show any clinical evidence of PJI recurrence after 15 months of follow-up. Because the half-life of bacterial rRNA is approximately a few days, the identification of bacteria rRNA on antibiotic PMMA spacers suggests that viable bacteria were present after conclusion of antibiotic therapy. This study provides evidence for the high tolerance of biofilm cells to antibiotics in vivo and the important role of bacterial persisters in PJI. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:452-458, 2018.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Arthroplasty, Replacement, Knee/adverse effects , Bacteria/isolation & purification , Prosthesis-Related Infections/microbiology , Bacteria/genetics , Biofilms/drug effects , Humans , Polymethyl Methacrylate , Prospective Studies , Prosthesis-Related Infections/drug therapy , RNA, Ribosomal/analysis
18.
Environ Sci Pollut Res Int ; 24(4): 3853-3860, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27900719

ABSTRACT

It has been shown that different nitrogen (N) addition led to various influences on soil microbial activities in forest ecosystems; however, the changes of bacteria were still unclear. In this work, inorganic N (NH4NO3) and organic N (urea and glycine) were fertilized with different ratios (5:0, 1:4, 3:2, 2:3, and 1:4) on temperate forest soils, while fungicide (cycloheximide) was simultaneously added on half of each treatment to inhibit fungal activities (leaving only bacteria). After a 3-year field experiment, soil samples were harvested, then microbial enzymatic activities involved in carbon (C), and N and phosphorus (P) cycles were determined. Under laboratory conditions, four purified bacteria which were isolated from sample site had been inoculated in sterilized soils under different N types and enzymatic activities were assayed after 90-day incubation. The results showed that cellulase and polyphenol oxidase activities of non-fungicide-added treatments increased after N addition and greater organic N accelerated the increases. However, these enzymatic activities of fungicide-added treatments were not significantly influenced by N addition and N types. It may be due to the insufficient ability of bacteria to synthesize enough enzymes to decompose complex organic C (such as cellulose and lignin) into available compound, although N-limitation was alleviated. Alkaline phosphatase activities increased after N addition in both non-fungicide-added and fungicide-added treatments, and the acceleration on bacterial alkaline phosphatase activities was even greater. Furthermore, organic N showed at least 2.5 times promotion on bacteria alkaline phosphatase than those of inorganic N, which indicated greater alleviation of bacterial P-limitation after the addition of organic N. All the results indicated that soil bacteria may be seriously limited by soil available C but become the dominant decomposer of the complex P compounds after N addition, particularly greater organic N.


Subject(s)
Bacteria/metabolism , Nitrogen/analysis , Soil Microbiology , Soil , Bacteria/chemistry , Carbon/analysis , Carbon/metabolism , Forests , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism
19.
PLoS Pathog ; 12(9): e1005879, 2016 09.
Article in English | MEDLINE | ID: mdl-27632364

ABSTRACT

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the "shock and kill" strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35-50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5-12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Subject(s)
Anti-Retroviral Agents/pharmacology , Depsipeptides/pharmacology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/physiology , Virus Replication/drug effects , Animals , CD8-Positive T-Lymphocytes/metabolism , Macaca mulatta , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/blood , Time Factors
20.
Clin Orthop Relat Res ; 474(7): 1649-56, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26831479

ABSTRACT

BACKGROUND: The continued presence of biofilm may be one cause of the high risk of failure observed with irrigation and débridement with component retention in acute periprosthetic joint infection (PJI). There is a poor understanding of the role of biofilm antibiotic tolerance in PJI. QUESTIONS/PURPOSES: (1) Do increasing doses of cefazolin result in decreased viable biofilm mass on arthroplasty materials? (2) Is cefazolin resistance phenotypic or genotypic? (3) Is biofilm viability a function of biofilm depth after treatment with cefazolin? (4) Is the toxin-antitoxin system, yoeB expression, associated with antibiotic stress? METHODS: Methicillin-sensitive Staphylococcus aureus biofilm was cultured on total knee arthroplasty (TKA) materials and exposed to increasing doses of cefazolin (control, 0.5, 1.0, 10.0, 100.0 µg/mL). Quantitative confocal microscopy and quantitative culture were used to measure viable biofilm cell density. To determine if cefazolin resistance was phenotypic or genotypic, we measured minimum inhibitory concentration (MIC) after exposure to different cefazolin concentrations; changes in MIC would suggest genotypic features, whereas unchanged MIC would suggest phenotypic behavior. Finally, quantitative reverse transcription-polymerase chain reaction was used to quantify expression of yoeB levels between biofilm and planktonic bacteria after exposure to 1 µg/mL cefazolin for 3 hours. RESULTS: Although live biofilm mass was reduced by exposure to cefazolin when compared with biofilm mass in controls (39.2 × 10(3) ± 26.4 × 10(3) pixels), where the level after 0.5 µg/mL exposure also showed reduced mass (20.3 × 10(3) ± 11.9 × 10(3) pixels), no further reduction was seen after higher doses (mass at 1.0 µg/mL: 5.0 × 10(3) pixels ± 1.1 × 10(3) pixels; at 10.0 µg/mL: 6.4 × 10(3) ± 9.6 × 10(3) pixels; at 100.0 µg/mL: 6.4 × 10(3) ± 3.9 × 10(3)). At the highest concentration tested (100 µg/mL), residual viable biofilm was present on all three materials, and there were no differences in percent biofilm survival among cobalt-chromium (18.5% ± 15.1%), polymethylmethacrylate (22.8% ± 20.2%), and polyethylene (14.7% ± 10.4%). We found that tolerance was a phenotypic phenomenon, because increasing cefazolin exposure did not result in changes in MIC as compared with controls (MIC in controls: 0.13 ± 0.02; at 0.5 µg/mL: 0.13 ± 0.001, p = 0.96; at 1.0 µg/m: 0.14 ± 0.04, p = 0.95; at 10.0 µg/m: 0.11 ± 0.016, p = 0.47; at 100.0 µg/m: 0.94 ± 0.047, p = 0.47). Expression of yoeB after 1 µg/mL cefazolin for 3 hours in biofilm cells was greater in biofilm but not in planktonic cells (biofilm: 62.3-fold change, planktonic cells: -78.8-fold change, p < 0.001). CONCLUSIONS: Antibiotics are inadequate at complete removal of the biofilm from the surface of TKA materials. Results suggest that bacterial persisters are responsible for this phenotypic behavior allowing biofilm high tolerance to antibiotics. CLINICAL RELEVANCE: Antibiotic-tolerant biofilm suggests a mechanism behind the poor results in irrigation and débridement for acute TKA PJI.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arthroplasty, Replacement, Knee/adverse effects , Biofilms/drug effects , Cefazolin/pharmacology , Drug Resistance, Bacterial , Knee Prosthesis/adverse effects , Prosthesis-Related Infections/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Arthroplasty, Replacement, Knee/instrumentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Biofilms/growth & development , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Knee Prosthesis/microbiology , Methicillin/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Confocal , Phenotype , Prosthesis Design , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...